IRGASON

Bæklingur  Handbók

Integrated CO2 and H2O Open-Path Gas Analyzer and 3-D Sonic Anemometer

Campbell Scientific’s IRGASON® fully integrates the open-path analyzer and sonic anemometer. Designed specifically for eddy-covariance carbon and water flux measurements, the patented design is easier to install and use than separate sensors and provides increased measurement accuracy. The IRGASON® simultaneously measures absolute carbon dioxide and water vapor, air temperature, barometric pressure, three-dimensional wind speed, and sonic air temperature. U.S. patent D680455

For more information about the benefits of having a colocated measurement, refer to the poster “Improved eddy flux measurements by open-path gas analyzer and sonic anemometer co-location.”

Benefits and Features

  • Combined support structure causes less flow distortion than two separate sensors
  • Truly colocated gas analyzer and sonic anemometer measurements avoid flux loss due to sensor separation
  • Synchronized gas analyzer and sonic anemometer measurements avoid the need to correct for time lag
  • Low power consumption; suitable for solar power applications
  • Measurements are temperature compensated without active heat control
  • Low noise
  • Maximum output rate of 60 Hz with 20 Hz bandwidth
  • Angled windows shed water and are tolerant to window contamination
  • Field rugged
  • Field serviceable
  • Factory calibrated over wide range of CO2, H2O, pressure, and temperature in all combinations encountered in practice
  • Extensive set of diagnostic parameters
  • Fully compatible with Campbell Scientific dataloggers; field setup, configuration, and field zero and span can be accomplished directly from the datalogger
  • Sonic temperature determined from three acoustic paths; corrected for crosswind effects
  • Innovative signal processing and transducer wicks considerably improve performance of the anemometer during precipitation events

Specifications

Patent U.S. Patent No. D680455
Operating Temperature Range -30° to +50°C
Calibrated Pressure Range 70 to 106 kPa
Input Voltage Range 10 to 16 Vdc
Power 5 W (steady state and power up) at 25°C
Measurement Rate 60 Hz
Output Bandwidth 5, 10, 12.5, or 20 Hz (user-programmable)
Output Options SDM, RS-485, USB, analog (CO2 and H2O only)
Auxiliary Inputs Air temperature and pressure
Warranty 3 years or 17,500 hours of operation (whichever comes first)
Cable Length 3 m (10 ft) from IRGASON® to EC100
Weight
  • 3.2 kg (7.1 lb) for EC100 electronics
  • 2.8 kg (6.1 lb) for IRGASON® head and cables
Gas Analyzer
Path Length 15.37 cm (6.05 in.)

A temperature of 20°C and pressure of 101.325 kPa was used to convert mass density to concentration.

Gas Analyzer – CO2 Performance
-NOTE- A temperature of 20°C and pressure of 101.325 kPa was used to convert mass density to concentration.
Accuracy
  • Assumes the following: the gas analyzer was properly zero and spanned using the appropriate standards; CO2 span concentration was 400 ppm; H2O span dewpoint was at 12°C (16.7 ppt); zero/span temperature was 25°C; zero/span pressure was 84 kPa; subsequent measurements made at or near the span concentration; temperature is not more than ±6°C from the zero/span temperature; and ambient temperature is within the gas analyzer operating temperature range.
  • 1% (standard deviation of calibration residuals)
Precision RMS (maximum) 0.2 mg/m3 (0.15 μmol/mol)

Nominal conditions for precision verification test: 25°C, 86 kPa, 400 μmol/mol CO2, 12°C dewpoint, and 20 Hz bandwidth.

Calibrated Range 0 to 1,000 μmol/mol (0 to 3,000 μmol/mol available upon request.)
Zero Drift with Temperature (maximum) ±0.55 mg/m3/°C (±0.3 μmol/mol/°C)
Gain Drift with Temperature (maximum) ±0.1% of reading/°C
Cross Sensitivity (maximum) ±1.1 x 10-4 mol CO2/mol H2O
Gas Analyzer – H2O Performance
-NOTE- A temperature of 20°C and pressure of 101.325 kPa was used to convert mass density to concentration.
Accuracy
  • Assumes the following: the gas analyzer was properly zero and spanned using the appropriate standards; CO2 span concentration was 400 ppm; H2O span dewpoint was at 12°C (16.7 ppt); zero/span temperature was 25°C; zero/span pressure was 84 kPa; subsequent measurements made at or near the span concentration; temperature is not more than ±6°C from the zero/span temperature; and ambient temperature is within the gas analyzer operating temperature range.
  • 2% (standard deviation of calibration residuals)
Precision RMS (maximum) 0.004 g/m3 (0.006 mmol/mol)

Nominal conditions for precision verification test: 25°C, 86 kPa, 400 μmol/mol CO2, 12°C dewpoint, and 20 Hz bandwidth.

Calibrated Range 0 to 72 mmol/mol (38°C dewpoint)
Zero Drift with Temperature (maximum) ±0.037 g/m3/°C (±0.05 mmol/mol/°C)
Gain Drift with Temperature (maximum) ±0.3% of reading/°C
Cross Sensitivity (maximum) ±0.1 mol H2O/mol CO2
Sonic Anemometer – Accuracy
-NOTE- The accuracy specification for the sonic anemometer is for wind speeds < 30 m s-1 and wind angles between ±170°.
Offset Error
  • < ±8.0 cm s-1 (for ux, uy)
  • < ±4.0 cm s-1 (for uz)
  • ±0.7° while horizontal wind at 1 m s-1 (for wind direction)
Gain Error
  • < ±2% of reading (for wind vector within ±5° of horizontal)
  • < ±3% of reading (for wind vector within ±10° of horizontal)
  • < ±6% of reading (for wind vector within ±20° of horizontal)
Measurement Precision RMS
  • 1 mm s-1 (for ux, uy)
  • 0.5 mm s-1 (for uz)
  • 0.025°C (for sonic temperature)
  • 0.6° (for wind direction)
Speed of Sound Determined from 3 acoustic paths (corrected for crosswind effects)
Rain Innovative signal processing and transducer wicks considerably improve performance of the anemometer during precipitation events.
Basic Barometer (option -BB)
Total Accuracy
  • ±3.7 kPa at -30°C, falling linearly to ±1.5 kPa at 0°C (-30° to 0°C)
  • ±1.5 kPa (0° to 50°C)
Measurement Rate 10 Hz
Enhanced Barometer (option -EB)
Manufacturer Vaisala PTB110
Total Accuracy ±0.15 kPa (-30° to +50°C)
Measurement Rate 1 Hz
Ambient Temperature
Manufacturer BetaTherm 100K6A1IA
Total Accuracy ±0.15°C (-30° to +50°C)